T2K Near Detector constraints for neutrino oscillation measurements

NuFact 2022 4th August 2022 Callum Wilkinson

T2K analysis in one slide

SK samples

- ν-mode 1R μ-like
- ν-mode 1R μ-like
- ν-mode 1R e-like
- ν-mode 1R e-like

20000

- ν-mode 1R e-like + 1 d.e.
- New(!): ν -mode ν_{μ} -CC1 π +

Total

2p2h

SK samples

- ν-mode 1R μ-like
- ν-mode 1R μ-like
- v-mode 1R e-like
- ν-mode 1R e-like

 $CC0\pi$

20000

M5000

MC Events (

- v-mode 1R e-like + 1 d.e.
- New(!): ν -mode ν_{μ} -CC1 π +

$$v_e + N \rightarrow e^- + \pi^+ + X$$

$$\downarrow^+ + v_\mu$$

$$\downarrow^+ + v_e + v_$$

Single pion production

Total

2p2h Other

CCQE

0.4

Cross-section model

Developed along with other aspects of the analysis:

- Initial state nuclear model
- 2p2h and 1π contributions to CC0 π
- Pion kinematics

See <u>S. Dolan's talk</u> for details

Neutrino beam

- Improved simulation with latest NA61 hadron multiplicity measurements
- Refined model for cooling water flow in horns

*Eur. Phys. J. C76, 617 (2016)

**Eur. Phys. J. C79, 100 (2019)

Near detector complex

UA1 Magnet Yoke

ND280 (2.5°)

WAGASCI + BabyMIND (1.5°)

Extensive XSEC measurement program – see <u>A. Cudd's talk</u> for details

ND280 off-axis

- Same 2.5° off-axis angle as far detector
- 0.2 T magnet for sign and momentum determination

• Fine grained detectors (FGDs):

- Scintillator and water targets
- Interaction mass and tracking

Time Projection Chambers:

- Gaseous argon
- Momentum and dE/dx

ECals surrounding the above

Previous: ND280 data

- Subdivide data based on number of final state pions
- ν and $\overline{\nu}$ -modes (split into μ^+/μ^-)
- Samples on plastic (FGD1) and water/plastic mixed (FGD2) targets

New(!) v-mode samples (\overline{v} -mode unchanged)

- Improves sample purities
- New (mostly DIS + multi- π) sample with FS π^0

- Subdivide $CC0\pi$ sample
- Constrain 2p2h + nuclear models

(FGD1 shown here)

All samples in p_{μ} - $\cos\theta_{\mu}$

Example: v-mode FGD1 CC- 0π -0p

ND280 fit

- Extended binned LLH fit: 22 (p_{μ} $\cos\theta_{\mu}$) ND samples + flux, XSEC and detector systematics
- Also, separate Bayesian approach with MaCh3 MCMC
- Various ND fit criteria before proceeding to FD fit (e.g., p > 0.05)

ND280 constraint

- Central values and uncertainties of systematics change as data updates model assumptions
- Strong rate constraint introduces anticorrelation between flux and XSEC

Flux constraint

- Flux prediction at SK is updated using correlations with ND flux
- (Approximate) p-value* for flux is okay, despite parameters moving around

*Not a true p-value as correlations with other parameters are neglected

Example: impact on XSEC parameters

- Deficit in CC0 π 0p sample, no deficit in CC0 π Np or CC1 π
- CCQE increased to compensate, rate increase in SK prediction!
- 2p2h suppressed to retain CC0πNp agreement

Impact on the SK prediction

ν-mode μ-like CC0π

T2K preliminary Pre-ND Post-ND 15 10 10 Reconstructed Neutrino Energy [GeV]

ν-mode e-like CC0π

- SK prediction is updated by the ND-constrained model
- Uncertainty on flux+XSEC reduced to be less than the SK detector uncertainty
- Details of oscillation fit in K. Yasutome's talk tomorrow!

Summary

- T2K ND is crucial for achieving our oscillation physics results
- Continued efforts to refine the ND samples which are included in the analysis
- Tightly coupled development with cross-section model and in response to new SK samples
- New opportunities with T2K ND upgrade, see
 A. Eguchi's talk next!

T2K collaboration

~500 members, 76 institutes, 13 countries (+CERN)

Backup

Impact of BANFF fit at SK

Prefit

Error source (units: %)	II	R RHC	$ MR $ FHC CC1 π^+	FHC	RHC	$\begin{array}{c} 1 \mathrm{R} e \\ \mathrm{FHC} \ \mathrm{CC1} \pi^+ \end{array}$	FHC/RHC
Flux Cross-section (all) SK+SI+PN	5.0 15.8 2.6	4.6 13.6 2.2	5.2 10.6 4.0	4.9 16.3 3.1	4.6 13.1 3.9	5.1 14.7 13.6	4.5 10.5 1.3
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6

Postfit

Error source (units: %)	l 1R		MR	\parallel 1Re			
	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

Off-axis technique

- Two body decay → maximum transverse component to the neutrino momentum
- Moving off-axis reduces the neutrino flux peak, and width of the distribution
- 2.5° off-axis → ~0.6 GeV narrow flux peak

Context: long-baseline oscillation experiments

Event rate Neutrino flux $R(\vec{\mathbf{x}}) = \int dE \ \Phi(E_{\nu}) \times \sigma(E_{\nu}, \vec{\mathbf{x}}) \times \epsilon(\vec{\mathbf{x}}) \times P(E_{\nu}; \nu_A \to \nu_B)$ Cross section Detector smearing

Oscillation probability

- Complex inference of oscillation probability from event rate
- Near detector constrains flux and cross-section systematic models
- But, uncertainties do not neatly cancel due to different fluxes
 + different detectors

